

ISSN: 2455-8109

Research

Hydrogel-Based Smart Drug Delivery Systems: Injectable and Implantable Platforms

M. Vimalraj^{1*}, D. Kumarasamyraja², Nivetha S.R³

^{1,2,3} PGP College of Pharmaceutical Science and Research Institute, Namakkal

*Author for Correspondence: M. Vimalraj,
Email: vimalraj536@gmail.com

	Abstract
Published on: 31 Oct 2025	Hydrogel-based smart drug delivery systems have emerged as one of the most transformative platforms in modern pharmaceutics, offering unique advantages in terms of biocompatibility, tunable physicochemical properties, and the ability to respond to environmental or physiological stimuli. Injectable and implantable hydrogels have particularly gained attention for their capacity to provide localized, controlled, and sustained release of therapeutic agents, reducing systemic toxicity and improving patient compliance. Hydrogels mimic the extracellular matrix, providing a hydrated three-dimensional environment suitable for drug encapsulation, protection, and on-demand release. Stimuli-responsive hydrogels that react to pH, temperature, redox state, enzymes, and external triggers such as light, ultrasound, or magnetic fields further expand their applications in cancer therapy, regenerative medicine, diabetes management, and infectious disease control. Injectable hydrogels enable minimally invasive administration, in situ gelation, and conformability to irregular tissue defects, while implantable hydrogels offer durable depots for long-term delivery, particularly for hormones, analgesics, anticancer agents, and vaccines. Recent advances in hybrid hydrogels incorporating nanomaterials, bioactive molecules, and 3D printing have broadened their therapeutic potential. However, challenges related to long-term biostability, sterilization, large-scale manufacturing, and regulatory approval remain. This review critically examines the design principles, stimuli-responsiveness, therapeutic applications, and translational challenges of injectable and implantable hydrogel-based smart drug delivery systems, highlighting current clinical progress and future perspectives.
Published by: Futuristic Publications	
2025 All rights reserved. 	
Creative Commons Attribution 4.0 International License.	Keywords: Hydrogels, Smart drug delivery, Injectable systems, Implantable systems, Stimuli-responsive platforms.

1.0 Introduction

Hydrogels are cross linked, three-dimensional polymeric networks with the remarkable capacity to absorb and retain large amounts of water while maintaining structural integrity. Their hydrophilic nature,

tunable mechanical properties, and structural similarity to living tissues make them highly suitable for biomedical applications. Since the first demonstration of hydrogels in drug delivery in the 1960s, research has expanded to engineer stimuli-responsive, biofunctional, and patient-centric systems capable of precise therapeutic action [1]. In particular, injectable and implantable hydrogel systems represent a paradigm shift in controlled drug delivery, enabling targeted, localized, and sustained release of bioactive molecules. Traditional drug delivery strategies, including oral and parenteral routes, often suffer from drawbacks such as fluctuating plasma concentrations, systemic toxicity, and reduced patient adherence. Hydrogels overcome these limitations by providing site-specific administration and controlled release profiles that can be tailored to therapeutic needs. Injectable hydrogels can be delivered in a minimally invasive manner, gelling *in situ* under physiological conditions to conform to irregular anatomical sites. In contrast, implantable hydrogels are pre-formed depots that can provide prolonged drug release, making them useful in chronic therapies such as hormone replacement or cancer treatment [2].

Recent advancements have enabled the design of “smart” hydrogels that respond to intrinsic or extrinsic stimuli. For instance, pH-responsive hydrogels can exploit tumor microenvironment acidity for selective release of chemotherapeutics, while thermo-responsive hydrogels undergo sol-to-gel transition at body temperature for *in situ* depot formation. Enzyme-responsive hydrogels can harness disease-specific enzymatic signatures for precision therapy. Additionally, external stimuli such as near-infrared light, ultrasound, and magnetic fields can remotely trigger release from engineered hydrogels [3]. These capabilities align hydrogels with the broader goal of precision medicine, where therapeutic interventions are customized to individual patient physiology and pathology. Despite significant progress, the clinical translation of hydrogel-based smart drug delivery platforms remains limited. Issues such as sterilization, scale-up manufacturing, reproducibility, immunogenicity, and long-term degradation profiles continue to hinder widespread regulatory approval [4]. Nevertheless, several hydrogel-based products, including ophthalmic and wound-healing formulations, are already in clinical use, and ongoing trials highlight their emerging role in cancer therapy, regenerative medicine, and vaccine delivery. The following sections will provide a detailed account of the material design, classification, stimuli-responsiveness, therapeutic applications, and translational barriers of injectable and implantable hydrogel-based smart drug delivery systems.

2.0 Fundamentals of Hydrogel Design for Drug Delivery

The design of hydrogel systems for drug delivery involves careful consideration of their polymeric composition, crosslinking strategy, and physicochemical behavior under physiological conditions. Hydrogels can be prepared from natural polymers such as chitosan, alginate, gelatin, hyaluronic acid, and dextran, which offer inherent biocompatibility and biodegradability, or from synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), and poly(N-isopropylacrylamide) (PNIPAM), which allow precise tuning of mechanical and degradation properties [5]. Increasingly, hybrid hydrogels combining natural and synthetic components are being developed to synergize bioactivity with structural control. Crosslinking mechanisms dictate the stability and responsiveness of hydrogels. Physical crosslinking via ionic interactions, hydrogen bonds, or hydrophobic forces enables reversible gelation and stimuli-sensitivity but may result in weaker mechanical strength. Chemical crosslinking, using covalent bonds formed through click chemistry, enzymatic reactions, or photopolymerization, confers higher stability and resistance to dissolution [6]. Advanced strategies such as dynamic covalent chemistry allow hydrogels to exhibit self-healing properties and reversible responsiveness.

The porosity and mesh size of hydrogels directly influence drug loading capacity and release kinetics. Large mesh sizes favor diffusion-controlled release, while smaller meshes can provide sustained release over extended periods. Modifications such as incorporation of nanoparticles, micelles, or liposomes within hydrogel matrices allow multi-modal delivery of hydrophilic, hydrophobic, and biomacromolecular drugs. Moreover, the incorporation of bioactive ligands and cell-adhesion motifs enables hydrogels to support tissue integration and therapeutic cell encapsulation [7]. An essential design principle for injectable hydrogels is sol-to-gel transition under physiological conditions, which can be triggered by changes in temperature, ionic strength, or pH. For implantable hydrogels, the ability to maintain long-term integrity without premature degradation is critical. Sterilization methods such as gamma irradiation, ethylene oxide treatment, or autoclaving must be compatible with hydrogel chemistry without altering their structure or drug release performance [8].

3.0 Injectable Hydrogel-Based Smart Drug Delivery Systems

Injectable hydrogels have revolutionized drug delivery by offering minimally invasive administration with *in situ* gelling capabilities. Typically delivered as a liquid precursor solution through a syringe or catheter, these formulations undergo gelation upon exposure to physiological conditions such as body temperature, ionic concentration, or enzymatic activity. This enables the hydrogel to conform to irregular tissue cavities and defects, providing localized drug depots without the need for invasive implantation surgery [9]. One of the most significant advantages of injectable hydrogels is patient compliance. Their ease of administration allows outpatient use and reduces hospitalization time. Thermo-responsive polymers such as PNIPAM or Pluronic-based systems have been extensively studied for cancer therapy, where anticancer drugs can be delivered directly into tumor sites. Similarly,

pH-responsive injectable hydrogels have been designed for oral or vaginal administration, releasing drugs selectively in acidic or basic microenvironments [10].

Injectable hydrogels also play a pivotal role in regenerative medicine. Encapsulation of stem cells, growth factors, or gene delivery vectors within injectable matrices enables site-specific regenerative therapy. For instance, hyaluronic acid-based injectable hydrogels are widely employed in cartilage regeneration, while chitosan-based hydrogels are used for wound healing and antimicrobial delivery. Enzyme-responsive injectable systems, such as those sensitive to matrix metalloproteinases, are particularly relevant in targeting diseases characterized by high enzymatic activity, including cancer and chronic inflammation [11]. Furthermore, injectable hydrogels can be engineered to deliver biomacromolecules such as insulin, monoclonal antibodies, and nucleic acids. Recent research has demonstrated injectable hydrogels encapsulating CRISPR-Cas9 components for *in vivo* gene editing, highlighting their potential in genetic therapy. Advances in bio-orthogonal chemistry and shear-thinning injectable systems have expanded the scope of hydrogel injectables in combination therapies, including co-delivery of chemotherapeutics and immune checkpoint inhibitors [12].

Despite their promise, challenges persist in ensuring reproducible gelation, mechanical stability under physiological loads, and controlled biodegradation. Burst release of encapsulated drugs remains a limitation, necessitating strategies such as multilayer hydrogels, nanoparticle incorporation, or covalent drug–polymer conjugation. Nonetheless, injectable hydrogels remain one of the most versatile and clinically promising platforms for smart drug delivery.

4.0 Implantable Hydrogel-Based Smart Drug Delivery Systems

Implantable hydrogels are pre-formed matrices or devices that are surgically placed at specific anatomical sites to provide sustained and localized delivery of therapeutic agents. Unlike injectable systems, implantable hydrogels offer higher mechanical stability and predictable release profiles, making them suitable for long-term drug delivery in chronic conditions such as cancer, diabetes, and hormonal disorders [13]. One classic example is the use of hydrogel-based implants for peptide and protein delivery, where the hydrogel matrix protects labile molecules from enzymatic degradation while enabling prolonged release. Poly(ethylene glycol)-based hydrogels have been extensively used for controlled release of luteinizing hormone-releasing hormone (LHRH) analogs in prostate cancer therapy. Similarly, implantable hydrogels loaded with opioids or non-steroidal anti-inflammatory drugs have been developed for post-operative pain management, reducing reliance on systemic administration [14].

Implantable hydrogels also serve as depots for cancer therapy, where local drug delivery can overcome issues of multidrug resistance and systemic toxicity. Biodegradable hydrogel wafers impregnated with carmustine are approved for implantation into brain resection cavities for glioblastoma treatment, representing one of the earliest clinically successful hydrogel implants [15]. Furthermore, implantable hydrogel systems are increasingly used in ophthalmology. For instance, hydrogels placed within the conjunctival sac can provide sustained drug release for glaucoma or post-surgical inflammation. Cardiac patches and vascular grafts based on implantable hydrogels have also demonstrated potential in cardiovascular drug delivery and tissue regeneration [16].

However, implantable hydrogels require surgical placement, which can increase patient discomfort and healthcare costs. In addition, retrieval of non-degradable implants may be necessary if adverse reactions occur. Sterility, mechanical fatigue, and predictable degradation kinetics remain critical considerations. Emerging strategies involve 3D printing of patient-specific hydrogel implants and integration of biosensors for real-time drug release monitoring, bringing implantable hydrogels closer to precision medicine [17].

5.0 Stimuli-Responsive Mechanisms in Smart Hydrogel Drug Delivery

Stimuli-responsive or “intelligent” hydrogels are designed to undergo reversible physicochemical transitions in response to specific environmental or external stimuli, resulting in controlled drug release or structural transformation. These systems exemplify the integration of materials science and biological responsiveness in modern pharmaceutics. Depending on the nature of the trigger, stimuli-responsive hydrogels can be categorized as pH-responsive, temperature-sensitive, redox-responsive, enzyme-sensitive, or externally actuated systems such as photo-, magnetic-, and ultrasound-responsive hydrogels [18]. pH-responsive hydrogels typically contain ionizable functional groups such as carboxylic acid, amine, or imidazole moieties that alter their ionization state in response to pH variations. These hydrogels exploit physiological differences across tissues for instance, the acidic tumor microenvironment (pH ~6.5) or inflamed tissues to achieve site-specific drug release. Poly (acrylic acid) and chitosan-based hydrogels have been extensively studied for pH-controlled delivery of anticancer drugs such as doxorubicin and paclitaxel [19].

Temperature-sensitive hydrogels, such as those composed of PNIPAM or Pluronic F127, undergo sol-gel transitions near physiological temperatures. Below their lower critical solution temperature (LCST), these systems exist as flowable solutions, enabling injectable delivery. Upon reaching body temperature, they form semi-solid gels that encapsulate drugs and release them gradually. This approach is highly effective in localized chemotherapy, ocular delivery, and post-surgical wound care [20]. Redox-responsive hydrogels incorporate

disulfide linkages that cleave in reductive environments rich in glutathione (GSH), a hallmark of intracellular and tumor tissues. This selective cleavage releases the encapsulated therapeutic load precisely at diseased sites, minimizing systemic toxicity. Similarly, enzyme-responsive hydrogels leverage enzymes such as matrix metalloproteinases (MMPs) or hyaluronidases that are overexpressed in cancer or inflammatory conditions to trigger localized degradation and drug liberation [21].

Externally actuated hydrogels further enhance spatial and temporal control. Photo-responsive hydrogels use light-sensitive chromophores (e.g., azobenzene, coumarin) to enable reversible structural changes upon illumination. Magnetic and ultrasound-responsive hydrogels incorporate nanoparticles or responsive domains that respond to external fields or acoustic energy, respectively, enabling non-invasive, on-demand release. The convergence of these stimuli mechanisms has led to multi-responsive hydrogels capable of responding to multiple triggers for more precise therapeutic modulation [22]. The adaptability and selectivity of stimuli-responsive hydrogels make them promising candidates for conditions requiring localized and dynamic dosing, such as cancer, diabetes, and wound management. However, reproducibility of response, tissue penetration of external stimuli, and long-term biosafety of reactive components remain areas for further optimization.

6.0 Hybrid and Multifunctional Hydrogel Platforms

Hybrid hydrogel systems combine hydrogels with other functional materials, such as nanoparticles, liposomes, micelles, or inorganic nanostructures, to overcome the limitations of single-component hydrogels. These composite platforms synergize the drug-loading versatility of nanoparticles with the mechanical stability and biocompatibility of hydrogels, resulting in superior control over release kinetics, targeting, and bioactivity [23]. For instance, nanocomposite hydrogels embedding gold nanoparticles or superparamagnetic iron oxide nanoparticles (SPIONs) exhibit enhanced mechanical strength and responsiveness to magnetic or photothermal triggers. These systems have demonstrated potential in localized hyperthermia-assisted drug delivery and real-time imaging-guided therapy. Similarly, liposome-in-hydrogel systems allow simultaneous encapsulation of hydrophilic and hydrophobic drugs, achieving biphasic release profiles ideal for combination therapies [24].

Recent innovations include self-healing hybrid hydrogels, capable of restoring their structure after mechanical damage, and adhesive hydrogels, which form stable interfaces with biological tissues. The incorporation of catechol or dopamine moieties inspired by mussel adhesion chemistry has yielded hydrogel adhesives that can securely attach to wet tissue surfaces, making them valuable in wound sealing and localized delivery [25]. Electroconductive hydrogels, integrating materials such as polypyrrole, polyaniline, or graphene oxide, have opened avenues for electrically triggered drug release and neural interfacing. These are particularly relevant in neuropharmacology and cardiac regeneration. Moreover, hybrid systems coupling hydrogels with biosensors or microelectronic circuits can provide feedback-controlled drug release, where sensors detect physiological signals such as glucose levels or inflammation markers to trigger proportional drug release forming the foundation of “closed-loop” therapeutic systems [26].

3D and 4D bioprinting technologies have further enhanced the structural and functional precision of hybrid hydrogels. Spatially patterned hydrogel matrices loaded with cells, growth factors, and drugs can recreate complex tissue architectures, enabling simultaneous regenerative and pharmacological therapy. Such **biohybrid constructs** represent the frontier of personalized medicine, integrating therapeutic, diagnostic, and regenerative capabilities in a single platform [27].

7.0 Clinical and Industrial Applications of Hydrogel-Based Smart Drug Delivery Systems

Hydrogel-based smart delivery systems have found significant application across a broad spectrum of clinical and therapeutic domains. Their combination of controlled release, biocompatibility, and mechanical tunability has enabled translation from preclinical innovation to human therapeutics. The most prominent applications span oncology, diabetes management, ophthalmology, wound care, and regenerative medicine [28]. In oncology, hydrogels have been used to deliver chemotherapeutics, immune checkpoint inhibitors, and gene therapy agents directly into tumor resection cavities or local tissues. Injectable thermosensitive hydrogels carrying doxorubicin or paclitaxel minimize systemic exposure while achieving sustained local release. Recent trials have explored immunomodulatory hydrogels delivering interleukin-2 and checkpoint inhibitors for synergistic cancer immunotherapy. Moreover, magnetic nanoparticle-laden hydrogels facilitate hyperthermia-assisted cancer treatment, integrating therapy and imaging capabilities [29].

In diabetes management, glucose-responsive hydrogels have achieved autonomous insulin release based on fluctuating glucose levels. Systems integrating glucose oxidase or phenylboronic acid moieties respond dynamically to hyperglycemia, maintaining normoglycemia without repeated injections. These systems represent a major stride toward artificial pancreas technologies and metabolic regulation [30]. In ophthalmology, hydrogel implants and inserts have addressed challenges in sustained ocular drug delivery. Poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels loaded with anti-glaucoma drugs or anti-VEGF agents provide long-term intraocular release, reducing the frequency of topical or intravitreal administrations. Similarly, wound healing applications exploit hydrogels as moist dressings loaded with antimicrobials, growth factors, or stem cells,

promoting angiogenesis and tissue repair while preventing infection [31]. Hydrogels are also advancing regenerative medicine by serving as cell-laden scaffolds for tissue reconstruction. Injectable hydrogels carrying mesenchymal stem cells and osteogenic factors have shown efficacy in bone and cartilage regeneration. Similarly, cardiac and neural patches fabricated from conductive hydrogels facilitate electrical integration and localized drug delivery in myocardial infarction and spinal cord injury models [32].

From an industrial perspective, hydrogel-based drug delivery systems are increasingly commercialized due to their scalability and compatibility with existing pharmaceutical processes. Products such as ReGel® (Medisorb/Pluronic-based depot) and Gliadel® wafer (polyanhydride-based implant) are clinically approved, demonstrating the translational feasibility of such systems. The global market for hydrogel-based therapeutics is projected to exceed USD 15 billion by 2030, driven by innovations in polymer chemistry, nanotechnology integration, and 3D fabrication techniques [33].

8.0 Translational and Regulatory Challenges

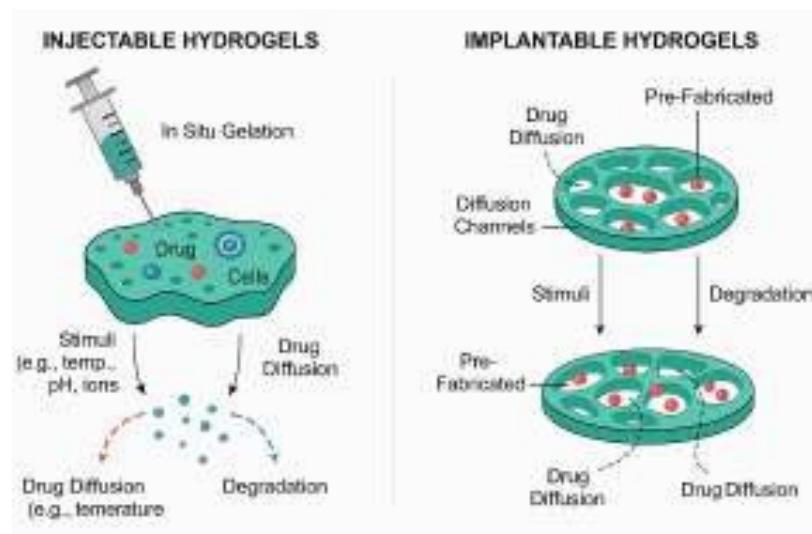
Despite their vast potential, hydrogel-based smart drug delivery systems face several translational barriers that limit their clinical adoption. One of the foremost challenges is **reproducibility and scalability**. Laboratory-scale synthesis often involves complex multi-step polymerization and crosslinking reactions that are difficult to replicate under Good Manufacturing Practice (GMP) conditions. Achieving batch-to-batch consistency while maintaining material functionality is critical for regulatory approval [34]. Sterilization presents another key issue, as conventional methods such as autoclaving or gamma irradiation can alter hydrogel crosslinking density, degrade drugs, or trigger premature gelation. Advanced sterilization strategies including low-temperature plasma or aseptic manufacturing environments are being explored, though they increase production costs [35].

The biocompatibility and biodegradation profiles of hydrogels must be thoroughly characterized. While natural polymers are generally well tolerated, their immunogenicity and variability may raise concerns. Synthetic hydrogels, though chemically defined, may release degradation byproducts that induce inflammatory responses. Regulatory bodies such as the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) require extensive preclinical biocompatibility, toxicology, and degradation studies for approval of hydrogel-based devices and combination products [36]. Additionally, mechanical performance under physiological stress is vital, particularly for implantable systems in dynamic tissues such as the heart or cartilage. Hydrogels must balance elasticity and toughness without compromising degradation kinetics. The interaction between hydrogel degradation and tissue remodeling processes remains incompletely understood, complicating predictive modeling of *in vivo* behavior [37].

The regulatory classification of hydrogels whether as drugs, devices, or combination products further complicates approval pathways. Systems delivering small molecules are typically evaluated as drug delivery devices, while those encapsulating cells or biologics may be regulated as advanced therapy medicinal products (ATMPs). Bridging these classifications requires interdisciplinary evaluation of chemistry, manufacturing, and control (CMC) parameters [38]. Finally, long-term safety and patient adherence are critical considerations. For injectable hydrogels, ensuring minimal injection pain, predictable degradation, and non-inflammatory byproducts is essential. For implantables, retrievability and biodegradation without residual toxicity are paramount. The integration of *in situ* monitoring technologies, such as biosensors or imaging agents, may help overcome regulatory hurdles by providing real-time safety data [39]. Despite these challenges, continued collaboration among polymer chemists, pharmaceutical scientists, clinicians, and regulatory authorities is driving standardization and advancing hydrogel technologies toward clinical reality.

9.0 Future Perspectives and Emerging Directions

The field of hydrogel-based smart drug delivery is evolving rapidly, driven by advances in polymer science, nanotechnology, and biomedical engineering. Next-generation hydrogel systems are envisioned to transcend conventional functions by integrating biosensing, biofeedback, and programmable intelligence into their design, leading to the concept of “theranostic hydrogels.” These platforms aim not only to deliver drugs but also to diagnose, monitor, and adapt to disease progression in real time [40]. One major frontier involves bioresponsive and autonomous hydrogels, capable of modulating therapeutic output in response to dynamic physiological signals. For example, glucose-responsive hydrogels that automatically release insulin during hyperglycemia and halt release when glucose normalizes represent an archetype of closed-loop systems. Expanding such principles to inflammatory, oncogenic, or hormonal markers could revolutionize chronic disease management [41].


3D and 4D printing technologies have opened unprecedented opportunities to fabricate hydrogel constructs with precise spatial, mechanical, and compositional control. In 3D printing, hydrogels are extruded or polymerized layer-by-layer into patient-specific architectures, allowing personalized implants for drug delivery or tissue regeneration. The emergence of 4D printing, where printed hydrogels dynamically change shape or function over time in response to stimuli, further enhances adaptability and therapeutic control [42]. Such constructs could, for instance, expand in response to inflammation or release drugs sequentially as tissue healing progresses. The integration of nanotechnology and hydrogel systems continues to advance multifunctionality.

Hybrid nanocomposite hydrogels combining quantum dots, metallic nanoparticles, or carbon-based nanomaterials can provide imaging, photothermal, or photodynamic functionalities alongside drug delivery. These “nanoengineered hydrogels” can deliver multimodal therapies, including chemophotothermal or gene–drug combinations, with high spatial precision [43]. Another exciting avenue is bioprinted hydrogel microenvironments that mimic the extracellular matrix (ECM) and release growth factors or signaling molecules in temporally controlled manners. Such systems can guide stem cell differentiation and tissue regeneration, transforming the therapeutic landscape of regenerative medicine. For instance, vascularized hydrogel scaffolds releasing angiogenic cues are being tested for ischemic tissue repair and organoid culture [44].

Immunomodulatory hydrogels are also gaining momentum. By releasing cytokines, antigens, or adjuvants in a temporally coordinated fashion, hydrogels can modulate immune responses for applications in vaccines, autoimmune therapy, and cancer immunotherapy. Coupling these with immune cell encapsulation or exosome delivery further enhances therapeutic efficacy and tissue integration [45]. The integration of artificial intelligence (AI) and digital health technologies with hydrogel systems represents a transformative frontier. AI-driven modeling can optimize hydrogel formulation parameters, predict degradation profiles, and simulate *in vivo* drug kinetics. Moreover, embedding biosensors and wireless communication modules within hydrogels could enable real-time feedback and remote monitoring, ushering in the era of “smart connected therapeutics.” Such synergy aligns with the goals of precision medicine, where therapies are not static but dynamically responsive to individual patient states [46]. However, realizing these futuristic applications requires addressing critical challenges related to standardization, scalability, and long-term biosafety. Developing universally accepted testing frameworks, predictive computational models for *in vivo* performance, and robust regulatory pathways will be crucial. Furthermore, exploring bioinspired materials, such as peptide- or polysaccharide-based hydrogels that replicate native tissue microenvironments, may enhance clinical translation by improving compatibility and minimizing immune reactions. In the foreseeable future, hydrogel-based smart systems will likely evolve into multi-functional, intelligent drug delivery depots capable of integrating therapy, diagnostics, and real-time adaptability. This convergence of biomaterials, nanotechnology, and informatics marks a paradigm shift toward personalized, minimally invasive, and sustainable therapeutics.

Table 1. Comparison of Key Attributes of Injectable and Implantable Hydrogel-Based Drug Delivery Systems

Parameter	Injectable Hydrogels	Implantable Hydrogels
Mode of Administration	Minimally invasive, delivered via syringe or catheter with <i>in situ</i> gelation	Surgically implanted preformed matrix or wafer
Gelation Mechanism	Triggered by temperature, pH, or ionic changes	Pre-crosslinked; degradation-controlled release
Drug Release Profile	Rapid or intermediate; can be stimuli-responsive	Sustained, long-term, diffusion-controlled
Mechanical Strength	Moderate; conforms to soft tissue	High; suitable for load-bearing or fixed sites
Therapeutic Applications	Cancer therapy, wound healing, regenerative medicine	Chronic diseases, hormone therapy, oncology, ophthalmology
Advantages	Minimally invasive, patient-compliant, customizable	Predictable kinetics, long-term stability
Limitations	Possible burst release, limited mechanical durability	Requires surgery, risk of removal complications

Figure 1. Conceptual Framework of Smart Hydrogel Functionality and Stimuli-Responsive Release Dynamics

10.0 Conclusion

Hydrogel-based smart drug delivery systems have revolutionized controlled therapeutic administration through their inherent biocompatibility, tunability, and stimuli-responsiveness. Injectable hydrogels enable minimally invasive delivery and in situ depot formation, while implantable hydrogels provide durable and predictable release profiles suitable for chronic therapies. The ability of hydrogels to mimic biological tissues, encapsulate diverse therapeutic agents, and respond to physiological or external cues underscores their potential as next-generation platforms for localized and systemic drug delivery. Over the past decade, advances in polymer chemistry, crosslinking techniques, and hybridization with nanomaterials have greatly expanded the functionality of hydrogel systems. Stimuli-responsive mechanisms ranging from pH and temperature to enzymatic and magnetic triggers have enabled precise temporal and spatial control of drug release. Concurrently, the rise of multifunctional, self-healing, conductive, and 3D-printed hydrogels has brought the field closer to realizing personalized and adaptive therapeutics.

Despite their immense promise, several translational hurdles persist. Manufacturing reproducibility, sterilization compatibility, long-term stability, and regulatory classification remain significant barriers to clinical adoption. Addressing these challenges requires interdisciplinary collaboration across material scientists, pharmacologists, clinicians, and regulatory experts. Progress in understanding hydrogel–tissue interactions and biodegradation dynamics will be critical for safe and predictable *in vivo* performance. The integration of hydrogel technologies with biosensors, artificial intelligence, and precision fabrication techniques heralds a future of intelligent, connected therapeutics systems that not only deliver drugs but also learn, adapt, and communicate. In this evolving biomedical landscape, hydrogel-based injectable and implantable platforms stand at the forefront of the shift toward precision drug delivery, offering new hope for improved efficacy, safety, and patient-centric care.

References

1. Peppas NA, Khare AR. Preparation, structure and diffusional behavior of hydrogels in controlled release. *Adv Drug Deliv Rev.* 1993; 11(1–2):1–35.
2. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. *Polymers.* 2008; 49(8):1993–2007.
3. Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. *Eur Polym J.* 2015; 65:252–267.
4. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. *Nat Rev Mater.* 2016; 1:16071.
5. Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. *J Adv Res.* 2015; 6(2):105–121.
6. Tuncaboylu DC, Argun A, Sahin M, Sari M, Okay O. Structure optimization of self-healing hydrogels formed via hydrophobic interactions. *Polymer.* 2012;53 (24):5513–5522.
7. Hoffman AS. Hydrogels for biomedical applications. *Adv Drug Deliv Rev.* 2012; 64:18–23.
8. Zhao X, Lang Q, Yildirimer L, et al. Photocrosslinkable gelatin hydrogels for epidermal tissue

engineering. *Adv Healthc Mater.* 2016;5(1):108–118.

9. Ruel-Gariépy E, Leroux JC. In situ-forming hydrogels review of temperature-sensitive systems. *Eur J Pharm Biopharm.* 2004; 58(2):409–426.
10. Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. *Chem Rev.* 2012; 112(5):2853–2888.
11. Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. *Tissue Eng Part B Rev.* 2008;14(2):149–165.
12. Yang JA, Yeom J, Hwang BW, Hoffman AS, Hahn SK. In situ-forming injectable hydrogels for regenerative medicine. *Prog Polym Sci.* 2014;39(12):1973–1986.
13. Van Tomme SR, Storm G, Hennink WE. In situ gelling hydrogels for pharmaceutical and biomedical applications. *Int J Pharm.* 2008;355(1–2):1–18.
14. Matanović MR, Kristl J, Grabnar PA. Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. *Int J Pharm.* 2014;472(1–2):262–275.
15. Brem H, Piantadosi S, Burger PC, et al. Placebo-controlled trial of safety and efficacy of biodegradable polymers for intracranial chemotherapy. *Lancet.* 1995;345(8956):1008–1012.
16. Ciolino JB, Hudson SP, Mobbs AN, et al. A prototype antifungal contact lens. *Invest Ophthalmol Vis Sci.* 2011;52(9):6286–6291.
17. Li L, Scheiger JM, Levkin PA. Design and applications of photoresponsive hydrogels. *Adv Mater.* 2019;31(26):1807333.
18. Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: theory, modern advances, and applications. *Mater Sci Eng R Rep.* 2015;93:1–49.
19. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. *Adv Drug Deliv Rev.* 2012;64(1):49–60.
20. Klouda L. Thermoresponsive hydrogels in biomedical applications: a seven-year update. *Eur J Pharm Biopharm.* 2015;97:338–349.
21. Gao W, Zhang Y, Zhang Q, Zhang L. Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. *Ann Biomed Eng.* 2016;44(6):2049–2061.
22. Zhu C, Lu Y, Zhao Q, Song Q, Lu J. Multi-stimuli responsive hydrogels for targeted delivery and tissue engineering. *Acta Biomater.* 2021;121:3–23.
23. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. *Chem Soc Rev.* 2019;48(6):1642–1667.
24. Tavakoli J, Tang Y. Hydrogel based sensors for biomedical applications: an updated review. *Polymers.* 2017;9(8):364.
25. Yang C, DelRio FW, Ma H, Killaars AR, et al. Biomechanics and degradation of natural polymer hydrogels for tissue engineering applications. *Adv Mater.* 2017;29(27):1700014.
26. Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. *Biotechnol Bioeng.* 2014;111(3):441–453.
27. Ashammakhi N, Ahadian S, Darabi MA, et al. Minimally invasive and regenerative therapeutics. *Adv Mater.* 2019;31(1):1804041.
28. Singh NK, Lee DS. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. *J Control Release.* 2014;193:214–227.
29. Zhang Y, Huang Y, Li S, et al. Injectable hydrogel-based drug delivery systems for local cancer therapy. *Front Chem.* 2021; 9:645369.
30. Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: challenges and opportunities. *Nat Rev Drug Discov.* 2015;14(1):45–57.
31. Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. *J Pharm Sci.* 2008;97(8):2892–2923.
32. Mao AS, Mooney DJ. Regenerative medicine: current therapies and future directions. *Proc Natl Acad Sci U S A.* 2015;112(47):14452–14459.
33. MarketsandMarkets. Hydrogel-based drug delivery systems market report. *MarketsandMarkets Research.* 2023.
34. Li X, Zhang R, Liang W. Challenges in the translation of hydrogel-based drug delivery systems from bench to clinic. *Adv Drug Deliv Rev.* 2022;182:114099.
35. Shazly T, Kelly DJ, Quinn TM, O'Brien FJ, Pandit A. Sterilization of tissue-engineered constructs: influence on structure and function. *Tissue Eng Part B Rev.* 2012;18(2):143–156.
36. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. *Prog Polym Sci.* 2007;32(8–9):762–798.
37. Calvert P. Hydrogels for soft machines. *Adv Mater.* 2009;21(7):743–756.
38. FDA Guidance for Industry. Drug-device combination products. *U.S. Food and Drug Administration;* 2019.
39. EMA. Reflection paper on the regulatory requirements for medicinal products containing polymers.

European Medicines Agency; 2021.

- 40. Zhang Q, Lin D, Deng C, et al. Theranostic hydrogels for precision medicine. *Chem Soc Rev*. 2022;51(2):564–590.
- 41. Zhao X, Liu S, Yildirimer L, et al. Injectable glucose-responsive hydrogels for controlled insulin release. *Acta Biomater*. 2021;124:135–147.
- 42. Ma X, Qu X, Zhu W, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. *Proc Natl Acad Sci U S A*. 2016;113(8):2206–2211.
- 43. Mandal A, Clegg JR, Anselmo AC, Mitragotri S. Hydrogels in the clinic. *Bioeng Transl Med*. 2020;5(2):e10158.
- 44. Zhang YS, Khademhosseini A. Advances in engineering hydrogels. *Science*. 2017;356(6337):eaaf3627.
- 45. Bencherif SA, Warren WL, et al. Injectable immunomodulatory hydrogels for cancer therapy. *Adv Drug Deliv Rev*. 2022;184:114172.
- 46. Khan F, Ahmad SR, Dutta J, Arvidsson R. Smart hydrogel systems: integration of biosensors and AI for personalized therapy. *Trends Biotechnol*. 2024;42(4):354–372.