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ABSTRACT 
 

Marine organisms harbor numerous bioactive substances .Scientific research on various applications of collagen extracted from 

these organisms has become increasingly prevalent. Marine collagen in collafibe sachets can be used as a biomaterial because it is 

water soluble, metabolically compatible, and highly accessible.  it is evident that marine collagen in collafibe sachets is a versatile 

compound capable of healing skin injuries of varying severity, as well as delaying the natural human aging process. From in vitro 

to in vivo experiments, collagen has demonstrated its ability to invoke keratinocyte and fibroblast migration as well as 

vascularization of the skin. Additionally, marine collagen and derivatives have proven beneficial and useful for both osteoporosis 
and osteoarthritis prevention and treatment. Other bone-related diseases may also be targeted by collagen, as it is capable of 

increasing bone mineral density, mineral deposition, and importantly, osteoblast maturation and proliferation.  
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INTRODUCTION 
 

The extracellular matrix (ECM) plays important roles in the 

physical integrity of cells, where it is involved in cell 

proliferation, differentiation, migration, and adhesion [1–6]. 

Collagen is the main structural protein in the ECM and 

connective tissue of animals. In mammals, collagen protein is 

highly abundant and mainly localized in the ECM of fibrous 

connective tissues, such as the tendon and skin [7–10]. It 

plays key structural roles by supporting the formation, tensile 

strength, and flexibility of joints [11–15].  

Collagen types I, II, III, V, and XI are able to form fibrils that 
are necessary for structural support and resistance to 

mechanical stress in connective tissues [16,17]. Type I 

collagen is the most abundant form and is mainly present in 

the tendons and skin [18–20]. 
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Collagen has numerous biomedical applications ranging from 

wound healing, bone and tissue regeneration, and drug 

delivery (Figure 1) [21,22]. Its accessibility, flexibility, and 

biocompatibility make it a useful biomaterial in several fields 

[22–24]. 

Collagen is a trimeric molecule made up of three polypeptide 

alpha-chains, forming highly organized three-dimensional 

structures capable of resisting mechanical stress and 

supporting the growth of cells [25,26]. 
Marine organisms such as fish, jellyfish, sponges, and other 

invertebrates harbor a significant source of collagen and are 

highly advantageous over other sources, as they are 

metabolically compatible, lack religious constraints and are 

free of animal pathogens [27–30]. 

In fact, fish skins are commonly used for type I collagen 

extraction, as they are not only immensely abundant but also 

do not have religious restrictions and are not a risk of disease 

transmission [31–33]. Land animals possess many 

transmittable diseases, which makes them less favorable for 

use in industries. For example, cattle, although a large source 

of collagen, pose risks for bovine spongiform encephalopathy 
(BSE) as well as transmissible spongiform encephalopathy 

(TSE) [29,34,35]. These progressive neurological disorders 

affect cattle and can result in life-threatening infections in 

humans [29]. In addition, some religious constraints on the 

use of bovines for the pharmaceutical and cosmetic industries 

are up for debate [35]. These factors make marine sources of 

collagen a much safer, easier, and promising alternative. 

Marine organisms such as fish, jellyfish, sponges, and other 

invertebrates harbor significant source of collagen and are 

highly advantageous over other sources, as they 

metabolically compatible, lack religious constraints and are 
free of animal pathogens [27–30].  

In fact, fish skins are commonly used for type I collagen 

extraction, as they are not only immensely abundant but also 

do not have religious restrictions and are not a risk disease 

transmission [31–33].  

Land animals possess many transmittable diseases, which 

makes them less favorable for use in industries. For example, 

cattle, although a large source of collagen, pose risks for 

bovine spongiform encephalopathy (BSE) as well 

transmissible spongiform encephalopathy (TSE) [29,34,35].  

These progressive neurological disorders affect cattle and can 

result in life-threatening infections in humans [29]. addition, 

some religious constraints on the use of bovines for the 

pharmaceutical and cosmetic industries are up for debate 

[35]. These factors make marine sources of collagen much 

safer, easier, and promising alternative. Skin wounds may 

take a long time to heal and often do not heal completely.  

Marine collagen isolated from organisms like fish, jellyfish, 

and sponges has been implicated several studies on its 
potential for increasing wound healing rates [36–41]. The 

processes involve increased fibroblast and keratinocyte 

migration as well as vascularization and growth [42–44]. In 

addition to accelerating wound healing, marine collagen has 

also been shown to have anti-aging properties by slowing the 

aging process in mice [45–48].  

Studies on humans have also shown that marine collagen can 

reduce wrinkles, improve skin elasticity, and enhance the 

overall structure and appearance of skin. Furthermore, 

collagen’s ability to regenerate bone has been shown to be 

successful in rat models of menopausal osteoporosis [49]. 

Marine collagen is able to increase bone mineral density and 
osteoblastic activity, serving protective effects against bone 

degeneration [49–53]. 

Collagen has also been shown to induce chondrogenic 

differentiation and prevent the development Skin wounds 

may take a long time to heal and often do not heal completely. 

Marine collagen isolated from organisms like fish, jellyfish, 

and sponges has been implicated in several studies on its 

potential for increasing wound healing rates [36–41]. The 

processes involve increased fibroblast and keratinocyte 

migration as well as vascularization and epidermal growth 

[42–44]. In addition to accelerating wound healing, marine 
collagen has also been shown to have anti-aging properties by 

slowing the aging process in mice [45–48]. 

Studies on humans have also shown that marine collagen can 

reduce wrinkles, improve skin elasticity, and enhance the 

overall structure and appearance of skin. Furthermore, 

collagen’s ability to regenerate bone has been shown to be 

successful in rat models of menopausal osteoporosis [49].  

Marine collagen is able to increase bone mineral density and 

osteoblastic activity, serving protective effects against bone 

degeneration [49–53]. Collagen has also been shown to 
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induce chondrogenic differentiation and prevent the 

development of osteoarthritis (OA) [54,55]. 

 

 
 

COMPOSITION OF COLLAFIBE SACHETS 
 

 
 
Collafibe sachets in Wound Healing and Anti-Aging 
Our skin epidermis is the most important innate defense 

barrier against all pathogens and plays a significant role in 

tissue homeostasis [56–58]. Skin injuries are difficult to treat 

yet are becoming increasingly common as a result of burns, 
infections, scarring, genetic disorders, and other diseases 

[59,60]. Treatments aim to restore the integrity of the tissue, 

involving processes such as inflammation, cell division, 

differentiation, and vascularization. 

Endothelial permeability enables cell adhesion, which is 

followed by cell differentiation and maturation [61,62]. 

Marine collagen has been shown to be an effective 

biomaterial for wound healing. Collagen can be utilized in 

various formulations, such as the use of collagen peptides and 

hydroxylates, or collagen fibers, and scaffold-like structures 

[44,63]. 

Marine collagen peptides are produced from collagen through 
both chemical and enzymatic hydrolysis, and their smaller 

molecular weight increases their water solubility, making 

them more absorbable [63,64]. Hu et al. used an in vitro 

scratch assay to demonstrate that marine collagen peptides 

improve wound closure at concentrations of 50g mL􀀀1 

starting at 12 h post-treatment with collagen [63].  
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Our skin epidermis is the most important innate defense 

barrier against all pathogens and plays a significant role in 

tissue homeostasis [56–58]. Skin injuries are difficult to treat 

yet are becoming increasingly common as a result of burns, 

infections, scarring, genetic disorders, and other diseases 

[59,60]. Treatments aim to restore the integrity of the tissue, 

involving processes such as inflammation, cell division, 

differentiation, and vascularization. 

Endothelial permeability enables cell adhesion, which is 

followed by cell differentiation and maturation [61,62]. 

Marine collagen has been shown to be an effective 
biomaterial for wound healing. Collagen can be utilized in 

various formulations, such as the use of collagen peptides and 
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hydroxylates, or collagen fibers, and scaffold-like structures 

[44,63]. 

Marine collagen peptides are produced from collagen through 

both chemical and enzymatic hydrolysis, and their smaller 

molecular weight increases their water solubility, making 

them more absorbable [63,64]. Hu et al. used an in vitro 

scratch assay to demonstrate that marine collagen peptides 

improve wound closure at concentrations of 50 μg 

mL−1 starting at 12 h post-treatment with collagen [63]. 

Wang et al. found that marine collagen peptides (MCPs) 
isolated from salmon skin significantly improved skin wound 

tensile strength in rats [42].  

 

The Potential Role of Collafibe sachets  in Bone and 

Cartilage Regeneration 
Marine collagen sources serve not only as a promising avenue 

for healing skin injuries but also for bone-related trauma and 
regeneration. Bone fracture repair and healing is a form of 

tissue regeneration and is a complex process involving bone 

formation and breakdown [90,91]. Often, patients present 

with conditions that require reconstruction of large bones as 

a result of genetic abnormalities, trauma, infection, and 

tumors [92]. There is an increasing demand to improve 

methods of bone repair and regeneration, such as functional 

bone grafts [93]. 

Marine collagen bioactive peptides are known to aid in the 

absorption of calcium and zinc, which are important 

components of bone and are beneficial for osteoporosis 
prevention [94,95]. A study performed by Xu et al found that 

marine collagen peptides isolated and derived by hydrolysis 

from chum salmon increased serum osteocalcin in treated rats 

compared to controls.  

Osteocalcin is a protein hormone secreted by osteoblasts and 

plays a role in bone maintenance and regeneration through 

interaction with calcium. The study also found that bone 

organic matrix, density, femoral length, and femur mineral 

ions were significantly higher in the collagen-treated group 

than in the controls [94]. 

 

The Potential Role of Collagen in Collafibe sachets in 

Bone and Cartilage Regeneration 
Marine collagen sources serve not only as a promising avenue 

for healing skin injuries but also for bone-related trauma and 

regeneration. Bone fracture repair and healing is a form of 

tissue regeneration and is a complex process involving bone 

formation and breakdown [90,91]. Often, patients present 

with conditions that require reconstruction of large bones as 
a result of genetic abnormalities, trauma, infection, and 

tumors [92]. There is an increasing demand to improve 

methods of bone repair and regeneration, such as functional 

bone grafts [93]. 

Marine collagen bioactive peptides are known to aid in the 

absorption of calcium and zinc, which are important 

components of bone and are beneficial for osteoporosis 

prevention [94,95]. A study performed by Xu et al found that 

marine collagen peptides isolated and derived by hydrolysis 

from chum salmon increased serum osteocalcin in treated rats 

compared to controls. Osteocalcin is a protein hormone 

secreted by osteoblasts and plays a role in bone maintenance 

and regeneration through interaction with calcium.  

The study also found that bone organic matrix, density, 

femoral length, and femur mineral ions were significantly 

higher in the collagen-treated group than in the controls [94]. 
It was hypothesized that the increase in bone mineral density 

was likely due to increased osteoblast activity, as seen by the 

increase in bone size and serum osteocalcin [94]. These 

results shed light on the potential collagen peptides involved 

in mineral deposition, bone matrix development and an 

increase in osteoblastic activity, which strongly suggests that 

collagen is a promising biomaterial for the prevention and 

treatment of osteoporosis [94].  

Osteoporosis and net bone loss are prevalent among aging 

women going through menopause resulting from estrogen 

deficiency [49]. Nomura et al. demonstrated that 20 mg of 

collagen isolated from shark gelatin also increased the bone 
mineral density of the spongy bone in rat models of 

menopausal osteoporosis [49]. 

Furthermore, the biological effect of marine collagen on rat-

derived bone marrow stem cells has also been demonstrated. 

Liu et al. showed that 0.2 mg/mL collagen isolated from fish 

promoted cell survival and upregulated the expression of 

several osteogenic and endothelial markers [50].  

 

CONCLUSION 
 

Studies on humans have also shown that marine collagen in 

Collafibe sachets can reduce wrinkles, improve skin 

elasticity, and enhance the overall structure and appearance 

of skin. Furthermore, collagen’s ability to regenerate bone 

has been shown to be successful in rat models of menopausal 

osteoporosis. Marine collagen in Collafibe sachets is able to 

increase bone mineral density and osteoblastic activity, 

serving protective effects against bone degeneration. 
Collagen has also been shown to induce chondrogenic 

differentiation and prevent the development. Skin wounds 

may take a long time to heal and often do not heal completely. 

Marine collagen isolated from organisms like fish, jellyfish, 

and sponges has been implicated in several studies on its 

potential for increasing wound healing rates. The processes 

involve increased fibroblast and keratinocyte migration as 

well as vascularization and epidermal growth. In addition to 

accelerating wound healing, marine collagen has also been 

shown to have anti-aging properties by slowing the aging 

process. 
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